
Journal of Statistical Physics, Vol. 55, Nos. 3/4, 1989 

Particles and "Bumps" in Quantum Field 
Configurations 

Ph. Blanchard, 1 E. A. Carlen, 2 and G. F. De lrAnton io  3 

Received August 12, 1988; revision received January 3, 1989 

We study an approach to making a precise identification of particles with 
"bumps" in quantum field configurations. The problem requires some effort 
because typical field configurations are distributions and not elements of the 
classical configuration space at all. We show that the part of a configuration 
consisting of "vacuum fluctuations" may be identified and filtered out in a very 
natural way, leaving a function which is in the classical configuration space. The 
filtered field configuration depends on the state ~ of the field, and for an 
n-particle state with n particles well localized and well separated in the Newton- 
Wigner sense, the filtered field configuration has n bumps located where the 
particles are. We close with a discussion of observation in the Schr6dinger 
representation for the free field in terms of our results. 

KEY WORDS: Localization; quantum field configurations; relativistic 
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1. I N T R O D U C T I O N  

W h i l e  it  is w ide ly  he ld  tha t  par t ic les  m a y  s o m e h o w  be r e g a r d e d  as " b u m p s "  

in a q u a n t u m  field c o n f i g u r a t i o n ,  the l i t e r a tu re  a p p e a r s  to lack  a careful  

s t udy  of  the  prec ise  sense in wh ich  this iden t i f i ca t ion  m a y  be made .  T h e  

issue is t o o  in t e re s t ing  to  leave  u n a t t e n d e d ,  and  so we u n d e r t a k e  such  a 

s tudy  in the  p resen t  paper .  

O u r  q u e s t i o n  is pu re ly  k i n e m a t i c a l ;  so it is na tu ra l ,  a n d  n o t  on ly  

exped i t ious ,  to c o n s i d e r  it in the  c o n t e x t  of  free fields. H o w e v e r ,  we will  

res t r ic t  o u r  a t t e n t i o n  to  sca la r  free fields. E v e n  in this bas ic  con tex t ,  o u r  
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results shed at least a ray of new light on the Schr6dinger picture in field 
theory. While the question has an intrinsic interest within orthodox quan- 
tum field theory, it is crucial in the treatment of quantum fields in terms 
of Nelson's stochastic mechanics. Indeed, this was our motivation. We will, 
however, develop the applications of our present results to stochastic 
mechanics in a later paper; here we restrict our attention to orthodox 
issues. 

The essential difficulty to be confronted when attempting to identify 
particles with bumps in quantum field configurations is that the latter are 
so very rough, it is difficult to see any bumps anywhere at all. The unfor- 
tunate, familiar fact is that the typical field configuration is not a function 
at all, but only a distribution. Picturesquely speaking, one might say the 
"vacuum fluctuations" are so violent, they overwhelm the bumps, like static 
interference washing out a broadcast signal. 

In this paper we describe a physically natural and mathematically 
sound way to filter out the vacuum fluctuations. This yields field configura- 
tions which are genuine functions in the classical configuration space of the 
field theory. Moreover, if the state of the quentum field is an n-particle state 
with n well localized and well separated particles in the Newton-Wigner 
sense, ~6~ then the filtered configuration will almost surely have n well.- 
defined bumps in the appropriate places. 

This filtering procedure takes into account the state gt of the field; 
indeed, it must for the above results to be true. 

We postpone a more detailed discussion of these results until we 
have established sufficient notation and background pertaining to the 
Schr6dinger picture for the Kle in-Gordon field; this occupies the next 
section of the paper. In Section 3, we give a careful treatment of our 
prescription for subtracting out vacuum fluctuations, and we discuss its 
physical content. 

We emphasize that we do not discuss the measurement procedure 
itself; that is, we will not give a prescription for doing an experimental 
observation. Here we take for granted the orthodox view that every self- 
adjoint operator on the state space is an observable, and that there is some 
experiment which will yield its singular values as results. We apply this 
point of view to the field operators, and ask how one could take the results 
of these observations and learn anything about how many particles there 
are and where the particles are located. Since even the particle number 
operator does not commute with the field operators, the answer requires at 
least some work. 

Finally, in Section 4, we apply the prescription when the quantum 
field is in an n-particle state. The resulting field configurations can be 
computed quite explicitly, and this permits us to provide a satisfying 
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answer to the question raised at the outset of this investigation; we do this 
in the conclusion to the paper. 

2. A more detailed treatment, in the same spirit and notation, of the 
Schr6dinger picture for the free scalar field of mass m can be found in 
ref. 1. Here we set down just enough background to permit a careful 
development of our discussion. 

The theory of the free scalar field of mass rn is based on the Klein- 
Gordon equation 

( ~ t 2 - A + m 2 )  O(x, t )=O (2.1) 

where q~ is a real function on R 3 x N. We interpret ~b(., t) as a classical field 
configuration at time t, and the Klein Gordon equation governs the 
classical time evolution of these configurations in exactly the same way as 
Newton's equation governs the evolution of configurations in an ordinary 
classical mechanical system. 

When we quantize the field in the Schr6dinger picture, the state 
space is the Hilbert space of square-integrable functions on the classical 
configuration space. Deciding which functions will constitute the classical 
configuration space and what measure we will put on it is closely 
related to choosing the sense in which we wish to solve (2.1); this choice 
is essentially determined by symmetry considerations. Let 

H =  ( - A  +m2)  u2 

and let ~ be the completion of real C~(N 3) in the Hilbertian norm 

is the q-space or classical configuration space of the scalar field of 
mass rn. 

To see why this choice is made for ~, define, for any real solution ~b 
of (2.1), a complex function ~b + by 

0 + (x, t) = (}(x, t) + i H  -1 ~(x, t) 

Then, if we put 

!l~ll 2 = H(~(. , t)H2+Hg-ld(. , t) l l2 = N~(., t ) I[ o~| 

and work out the right-hand side by Fourier transforming, we see that it 
is independent of t and even of the Lorentz frame in which the computa- 
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tion is done. Therefore, the left-hand side defines a Hilbertian norm on a 
space of solutions of the Kle in-Gordon  equation. Though the solutions 
themselves are real, the completion is a complex Hilbert space in a natural 
way- -complex  numbers just multiply ~b + in the usual manner. Denote this 
complex Hilbert space by o~/d. It is called the single-particle Hilbert space, 
and the Poincar6 group acts on it unitarily by construction. (2) 

is the phase space of our classical field theory. Taking the real and 
imaginary parts of some ~b+(., 0) in ) f  yields ~b(., 0) and H-10~( ., 0) in 
~ - - t h e  initial configuration and the initial momentum.  Unfortunately, this 
decomposition of the phase space into configuration space and momentum 
space is not Poincar6 invariant; it depends on the choice of the t = 0 hyper- 
plane. 

However, whatever choice we make, we get some version of ~ as the 
configuration space. It remains to put a measure # on ~, so that we may 
form the state space of square-integrable functions on ~. 

For  any number  of reasons, the natural choice to make for # is the 
Gaussian measure on ~ of unit covariance. For  instance, this is related in 
an obvious way to the unit Gauss measure on ~ which is Poincar6 
invariant. 

Here we run into a problem typical in the quantization of systems with 
infinitely many degrees of freedom: there is no unit Gauss measure living 
on ~ itself. The reason for this is easily understood; recall that 

and 

f~n IX] 2 e -1xl2/2 d ~ x  = n  

IfNn (IXl2-- n) 2 e-lXl2/2 dnxll/2= (2n)1/2 

This means that if we equip the n-dimensional Hilbert space Rn with 
its unit Gauss measure, this measure is more and more concentrated on the 
sphere of radius x/-s as n increases. For  an infinite-dimensional Hilbert 
space like ~, we might then expect that the support  of the unit Gauss 
measure lies outside ~ itself, and indeed it does. It  is precisely this fact 
which forces us to work with generalized field configurations. 

In the theory of integration on Hilbert space developed by Gross, ~ 
one first builds a larger space on which the measure can live. One does this 
by taking the completion of ~ in a smaller Banach space norm II'LIB 
yielding a larger Banach space B in which ~ is densely imbedded. Gross 
has described the norms- - there  are p len ty- -  which yield spaces capable of 
supporting the unit Gauss measure on ~ in the following sense: For  any 
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such B there is a Borel probability measure/~ on B so that for each ~b in 
2 which happens to lie in the dual of B--these are dense--the function 

~ (~, ~)~ 

is a Gaussian random variable on the probability space (B, N', if) with 
mean zero and variance I1r By an approximation argument, these 
random variables can be defined for every r in 2. Of course, for the reasons 
cited above, # ( ~ ) =  0, but in some sense B is big enough to contain the 

sphere of radius ~ in 2, and that is where the unit Gauss measure on 
2 lives. 

Making any such choice of B, set • = L2(B, ~, #), the space of all 
complex square-integrable functions on B. This is the Hilbert space of states 
for the free scalar field of mass m. A fundamental fact discovered by Segal (4) 
is that Y is naturaly isomorphic to the Fock space 

n = 0  

that is, the symmetric tensor algebra over ~ .  Segal's result is what relates 
the Schr6dinger picture to the more familiar Fock space picture. Moreover, 
since the Fock space does not involve B, Segal's result shows that any two 
choices of B lead to naturaly isomorphic state spaces. This partially justifies 
thinking of ~,U as L2(2). 

Let S: X ~ ~ denote Segal's unitary transformation. One can give an 
explicit representation of S; see ref. 4 or ref. 1. 

Next, by construction, the time translation subgroup of the Poincar6 
group acts unitarily on ~ ,  and so, acting factor by factor, it acts unitarily 
on Fock space o~. Conjugating by S, it acts unitarily on J r ;  let F(U(t)) 
denote this unitary group. By Stone's theorem we have 

F ( O ( t ) ) = e  -i'-~ 

for some self-adjoint operator 5r on ~ .  This is the Hamiltonian for the 
free scalar field of mass m in the Schr6dinger representation. The 
Schr6dinger equation for the free field then is 

0 
i N 7t(~, t ) =  Lf ~u(~, t), ~u(~, 0 ) =  ~Uo(~ ) (2.2) 

One can easily compute ~ ~ and see that ~ is an infinite-dimensional 
ellitic partial differential operator. In fact, it is just the infinite-dimensional 
Ornstein-Uhlenbeck operator. All one needs to make this computation is 
the explicit form of S and the familiar Fock space representation of the 



774 Blanchard e t  al.  

Hamiltonian. For details, see ref. 1. We close this section with versions of 
two results from that paper which we will use in the next sections. First 
recall that g" is said to be an n-particle state in case Sg ' e  @sym o~, and the 
zero-particle state gt = 1 is called the vacuum state. 

T h e o r e m  2.1. T(~, t) is a single-particle solution of (2.2) exactly 
when 

gt(~, t) = (4, ~b(-, t))~ + i({, H -  16( ", t))~ 

for some solution ~b of the Klein-Gordon equation (2.1) belonging to ~ .  
Now, ~u(~, t) is an n-particle solution when it is the projection onto the 
n-particle subspace of ~( of a homogeneous polynomial of degree n in 
single-particle solutions, and the general n-particle solution is obtained as 
a limit of such solutions. 

This result spells out the relation between solutions of the Klein- 
Gordon equation and the Schr6dinger equation for the free field. This 
permits us to use the following result on the long-time asymptotics of 
solutions to the Klein-Gordon equation as a result on the long-time 
asymptotics of the Schr6dinger equation. 

T h e o r e m  2.2. Let ~b(x, t) be any solution of the Klein-Gordon 
equation (2.1) with ~b + belonging to Jr Then 

lim II~(', t) l l_~= lim IIg a~(., t)ll 2 _ -]1•+(., 0)ll~/2 
'~  ~ '~ ~ (2.3) 

lira (~b(-, t), H - ' ~ ( . ,  t ) )~ = 0  
t ~ c ~  

Moreover, if ~b(., 0) and H ld(., 0) belong to the Schwartz space 5~, the 
convergence is faster than any inverse power of t. 

Indeed, for any v e ~3, Iv[ < 1, and any f which is the Fourier trans- 
form of a bounded function supported in the ball of radius 2m[vl/ 
(1 - v2 ) I /2, 

f f ( x - v t ) [ l g l / 2 ( b ( x ,  t)] 2 -  Ig - l /2~(x ,  t)]=] d 3 x = O  tlifn 
(2.4) 

f f ( x -  vt)[Hl/Z~b(x, t) H- t /2~(x ,  t)] d3x = 0 

faster than any power of t when ~b(-, 0) and H - ~ ( . ,  0) belong to 5e. If also 
my~(1 _/)2)1/2 belongs to the support of ~+(- ,0)  and 0 belongs to the 
support of f,  then 

l i ra  t 3 J" f ( x  - vt) tHmr + (x, t)] 2 d3x (2.5) 

exists and is not zero. 
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Proofl The first part is a limiting case of the second, and it is 
discussed in detail in ref. 1. Therefore we limit ourselves to a sketch of the 
simple stationary phase argument which yields the second part. 

Let us introduce ~9+ =H1/Zq~+, which is a normalized element of 
L2(~n). This appears frequently in our computations, and it is what tends 
to a solution of the free Schr6dinger equation (after adjusting the phase) 
in the nonrelativistic limit. 

Fourier transforming, we obtain 

ff(x-vt)[~+(x, t ) ]  2 d3x 

=(2~)5 {exp[it(k'2 +m2)l/2 +(k2 +m2)I/z + v ' ( k - k ' ) ] }  

M f ( k  -- k t )  i~ + (k ' ,  O) 0 + ( - k,  O) d J k  d 3 k  ' 

1 
- (2~) 3 f f  {exp[itF~(k, k ' ) l  } ~(k,  k') dgk d3k ' (2.6) 

where Fv(k, k') = (k '2 + m2) 1/2 + (k 2 + m2) m + v. (k - k'). 
Fv possesses just one critical poini, namely k = m v / ( 1 - v 2 )  1/2, 

k ' = - m v / ( 1 - v 2 )  1/2. By our hypothesis on f and v, this critical point 
lies outside the support of ~. Since ~ + ( . , 0 )  belongs to ~ ,  a standard 
stationary phase result (8'9) says that the integral (1.3) vanishes to all orders 
in t. 

Taking the real and imaginary parts of this yields (2.4). 
On the other hand, reexpressing (2.5) using the Fourier transform 

yields an oscillatory integral with the unique critical point of the phase 
function being k = my/(1 - v2) ~/2, k' -- my~(1 - v2) 1/2. Under the addition 
hypothesis on the supports of f and ~+,  the critical point belongs to the 
support of the integral, and by the standard argument in refs. 8 and 9 the 
integral decays like t -3 (since it is a six-dimensional integral). | 

3. As we have seen in the last section, it is necessary to use wave 
functions ~ which are functions not on the classical configuration space 
~- -as  in the quantization of a system with finitely many degrees of 
freedom--but on a larger space B of generalized configurations. It may be 
shown that even in one spatial dimension, B must be taken to consist of 
distributions; any function space is too small. ~5~ For any choice of B, 
#(~) =0.  

This, then, is our problem: when we observe the configuration of our 
system--however this is to be actually done in the laboratory--we are 
supposed to get a classical field configuration as a result. The probability 
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that we observe a configuration in some particular set of the classical con- 
figuration space is given by integrating the squared modulus of the wave 
function for the state of our system over the set in question. That at least 
is the orthodox Born interpretation of the wave function's physical content. 
Unfortunately, the entire classical field configuration space is a set of 
measure zero in the case at hand. If a configuration ~ is selected at random 
according to the law I T(~)] 2 #(d~), the result will not even be a function. 
The typical ~ will have wild behavior everywhere with no recognizable 
bumps. Moreover, this is still true after smearing--although then at least 
we would have a function. We wish to reconcile this wild behavior with the 
orthodox Born interpretation and with the folklore picture of bumps in the 
field representing particles. 

We claim that this wild behavior is entirely due to "vacuum fluctua- 
tions" and that these may be "filtered out" in a natural fashion. Moreover, 
for finite-energy states, the filtered configuration is a classical field con- 
figuration--an element of ~--with bumps in the right places. 

We start to substantiate these claims by describing the filtering 
prescription. Fix a wave function T. For the sake of a simple notation let 
~ ( f )  denote the random variable 

q~(f) = (., f).~ 

on (B, ~ ,  15ul 2 d#) for any f ~ .  We will usually write r f ) i n  place of 
(qs(f))(~). Also, we will write E ~' to denote expectation with respect to the 
probability law I~] 2 d#. Before carefully describing the filtering procedure 
in three spatial dimensions, we give a heuristic description in one spatial 
dimension, adapting all our notation in the obvious way. 

For each x in ~, define the random variable 

/~(x) = ~(H-1/21 ~o,x~) 

Since [IH-1/21(o,x)lIa=lxl 1/2, in the vacuum state (that is, g t = l ) ,  the 
probability law is just /~; each fl(x) is Gaussian with mean zero and 
variance Ixl. Making a similar computation of the covariances, one sees 
that x ~  fl(x) is a two-sided standard Wiener process with fl(0)= 0. The 
weak derivative (d/dx)fi(x) is then the white noise process. Formally 
regarding the elements ~ of B as functions, we may write 

qb(~, f )  = f~ Hi(y) f (y)  dy (3.1) 

Then f i ( x ) = ~  Hm~(y)l(o,x)(y)dy and since (d/dy)l(o,x)(y)=6(x-y ), 
we have 

d 
dx  fi(x) = H1/2 ~(x) 
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That is, in the vacuum state, H1/2~(x) is just the white noise process. 
The fact that the fluctuations of H1/2~(x), unlike those of ~(x) itself, are 
independent for x in disjoint regions under the vacuum state law is what 
will enable us to filter out the vacuum fluctuations in a physically meaning- 
ful way. Now let gt be some other state, and consider the random variables 
fl(x) with respect to the probability law [ ~u(~)r2 #(d~). Then x ~ fl(x) is no 
longer a Wiener process, and so its derivative is no longer the white noise 
process. Rather, we will have something like 

d 
dxx fl(x) = ~(x) + white noise (3.2) 

Once we have made sense of this equation, we will interpret r/(x) as 
H~/2~(x) filtered of the "vacuum fluctuations" in the state ~u, and we will 
interpret the white noise as "vacuum fluctuations." 

To produce a meaningful version of (3.2) in three spatial dimensions, 
as well as to explain the physical content of our filtering prescription, we 
introduce the a-algebras 

a(A) = a{q~(f) lsupport(H ,/2f) c A } 

for all open subsets A of ~3. Let Ch(x) be the closed cube in ~3 with sides 
of length h parallel to the (fixed) coordinate axes and center x ~  ~3. Let 
Dh(x) denote its complement. 

Def in i t ion 3.1. In the state ~g, the filtering of the field configura- 
tion is the map given by ~ ~ q(x, 4) where 

t/~'(x, ~) --- l i ra  1 ~,. 1~2 ~TE { ~ ( H -  / lch(x))la(Dh(x)) } (3.3) 

provided this limit exists in probability with respect to r ~(~)12 ~(d~), 
The conditional expectation in (3.3) eliminates the white noise in (3.2); 

and taking the limit in (3.3) amounts, in one spatial dimension, to taking 
the derivative in (3.2). 

We now wish to explain why this is a natural definition. Consider the 
following straightforward approach to the problem of measuring the field 
configuration in the state 7t: Pick a small h > 0 and a large integer N. For  
each n e [ - N, N]  3 define 

f .  = h-3/2 H 1/21Ch(h.) 

Then the { f , ] n s  I - N ,  N] 3} are an orthonormal system in 2. While it is 
incomplete, the projection onto its span tends strongly to the identity as h 
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decreases to zero and N increases to infinity. As this happens, the 
associated system of commuting observables 

{q~(f,)ln ~ I - N ,  NJ 3 } 

tends to a complete system of commuting observables. 
Now repeatedly prepare the system to be in the state ~g and measure 

the observables above, obtaining values .(k) where the k denotes the kth 
trial. After a very large number of trials, one is able to deduce the value of 
the conditional expectations 

Ee{q~( f , ) J~ ( fm)=cq ,  for men} 

for any given specification of the outcomes en. 
In the vacuum state each of the random variables ~b(fn) is a unit 

Gaussian independent of the others. Actually, since 

h 3fc~(x)H~/2~(y)dy=h 3cr~(g-1/21Ch(x)) 

it is h 3/2cb(f,) that concerns us, and this has variance h 3. 
In a generic state ~, the random variables h 3/2~b(f,) will no longer 

be Gaussian, but they will still have a variance which diverges as h 
decreases to zero. And though they will no longer be mutually independent, 
even the conditional variance given the outcomes for all the other 
observables--will still diverges as h decreases to zero. The only way to get 
a definite value for 

h-3 ( H1/2~(x) dx ~ch (hn) 

in the state 7 r is to take those trials of our experiment for which the obser- 
ved value of ~(fm) is very close to (r f,~).~ for all mr we know the 
observation is yielding a generalized configuration close to c - -and  then 
averaging over the observed values of qs(f~) in these trials. Idealizing this 
by taking h to zero and N to infinity yields the definition given above of 
the filtered field configuration at ~ in the state ~u. 

The procedure of filtering described above parallels the quantum 
mechanical prescription for measurement of an observable with continuous 
spectrum. 

Notice that q(., ~) is H~/2~, and not ~ itself, filtered of vacuum fluctua- 
tions. One could make a case for referring to H ~/2r/(-, 4) as the filtered 
field configuration; however, as we have just argued, it is r/(., 4) that is 
directly accessable to observation--again granted the orthodox assump- 
tions about observables and measurements. 
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Clearly, in the vacuum state, this filtered field configuration vanishes 
identically on account of the independence discussed above. This is as it 
should be; in the vacuum state one has nothing but vacuum fluctuations. 
In the next section we show that for states of definite particle number, the 
filtered field configuration not only exists, it is quite well behaved. 

4. Consider first the case where ~u is a one-particle state. By 
Theorem 3.1, ~g has the form 

~u(~) = (~, ~+)~ 

where ~b+ = ~b + i H  lq~ with H~b+ ]1~ = 1. Extending q~ to be complex linear, 
we can rewrite this using the notation of the last section as 

~,(~) = (05(~ +(., t))(~) 

For any measurable subset A c ~3, let PA be the orthogonal projec- 
tion (in ~ as well as ~ )  

P A = H -  1/21 A H1/2 

Clearly, if A ~ B = ~ ,  PA I PB" Write 

~+ = ~+,h+ ~+ 

where ~b+.h=Pch(x~b+ for some fixed x. With this notation in hand, we 
may now easily compute the filtered field configuration. 

Note that 

I g*(~)l 2 = I~(~b +,h)12 + I~(~bh+)12 + 2 Re ~b(~b +,h)* cb(~b +h ) 

Then if F is any bounded a(Dh(x) )  measurable random variable, 

E ' e ( ~ ( H  1/21 c~(~))F ) 

= EI(I gq2lq~(H a/=lch(x))F ) 

= E~(lq~(O +,h)12q~(H-~/21Ch(x))) E~(F) 

+ gl(cI)(H-1/21Ch(x))) gl(]~(~t+ )12F) 
+ 2 Re gl(l~(r I~(H ~/21ch(:~)) E~(c/,(~bh+)F) 

by independence. 
Obviously, 

E I ( O ( H  - 1/21 Crux))) = 0 
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Writing 

El(lqO(~b+.h)l 2 qb(H 1/21C~(x)) ) 

out as a two-dimensional Gaussian integral, one sees that it, too, vanishes. 
Finally, 

1 * f g.lr + 1/2 {/1. ," "* E (4~(qi+.h) qb(H-*/21Ch(x)))= ch(x)" +,htY) dy 

We therefore have 

F~ q 

E~'(cp( H- m l ch(x)) F) = 2 Re [Jch(x)H1/20+'h(Y)dyJE~([ ~l 2~(~h )F) 

so that, since F is arbitrary, 

h - 3E~e{ ~ ( H -  1/21 Ch(x)) I O(Dh(x)) } 

= 2 R e [ h  -3 fChtx H~/Zr ~1 2~b(r (4.1) 

But as h decreases to zero, Ch+ tends strongly to r  and O(Dh(x)) 
increases to B(B). Therefore, the conditional expectation on the right just 
above tends almost surely to I gq-245(r which we define to be zero on 
the null set where T vanishes. Also, 

lim h 3~" H1/2(~.+(y) dy=Ha/20.+(x) 
h ~ 0 dCh(x)  

for almost every x. 
This proves the following result. 

T h e o r e m  4.1. For the single-particle state T,(~)=~b(r t))(r 
the filtered field configuration r/t(x, 4) exists and is given by 

~tff(x, r  21 ~(~)t-2 Re[ ( r162  t))(r162 t)] (4.2) 

where the right-hand side is defined to be zero where T vanishes. 
Note that t/(x, 4) is a linear combination of H1/2qk(x) and H-1/z()(X), 

so ~/(., 4) is always an element of L2(~3). Moreover, when gt is in the form 
domain of H--which is the case exactly when ~b + is in the form domain of 
H in ~(1) t/(., 3) is actually an element of the classical field configuration 
space ~. That is, in a finite-energy single-particle state, the filtered field 
configuration belongs to the classical field configuration space. 



Quantum Field Configurations 781 

It is perfectly natural that the filtered field configuration is only in 
when ~v is a finite-energy state--as we have pointed out before, ~/is H1/2~ 
and not 4 itself filtered of vacuum fluctuations. The H-mq( . ,  4) is always 
in 2. Similar conclusions apply to H 1/2r/, though the nonlocal operator 
H 1/2 will smear the bumps a bit (very little if the energy is close to the 
rest energy). However, for the reasons we explained earlier, we prefer to 
work with q(., ~). 

We are now in a position to look for bumps; we take a fixed single- 
particle state T as above. Writing out (4.2) a bit more explicitly, the 
filtered configuration ~(., 4) is given by 

q~*(x, ~) = 2 f T I - 2  {(~(r162 ) + (~b(H l(6)4)(H-1/2()(x))} (4.3) 

Recall that to say r ~ ~ is well localized in the Newton-Wigner 
sense (6'7) near Xo e ~3 is to say that the functions H~/20 and H-1/2q~ are well 
localized near Xo. Clearly, then, q(., 4) is well localized near x 0 exactly 
when r + is well localized near Xo in the Newton-Wigner sense-whatever  
specific interpretation is made of "well localized." Of course, the localized 
distrubance might well have many oscillations--so one should not picture 
a simple, smooth bump- -bu t  bearing this in mind, it will do no harm to 
refer to it as a bump. 

Note that for any given ~ and t, the support of ~/t(', 4) gives only par- 
tial information about the location of the particles in the Newton-Wigner 
sense. The support of qt(', 4) is contained in the union of the supports of 
HI/2~ and H-~/2q~--that is, the support of r  But the possible cancella- 
tions may leave the containment strict. The partial information is such that 
given knowledge of q,(., 4), one cannot compute q,(-, ~) for later t. 

This said, we turn to a further examination of the sense in which we 
can say "the bump is where the particle is." 

Fix a one-particle state Tt and let q~ be the corresponding filtered field 
configuration. Then for any v s N3, Iv[ < 1, and any bounded function f on 
~3 define 

Xt(4) = ~ f ( x -  vt)Irb(x, 4)12 d3x 
[qt(x, 4)[ 2 d3x 

If f is the characteristic function of a set A and we put A,-= 
{ x [ ( x -  vt)~ A }, then Xt(4) represents the fraction of the bump contained 
in At as seen by the measurement procedure considered here. 

On the other hand, when f and v satisfy the hypotheses of 
Theorem 2.2, we will see that Xt has simple asymptotics for large t. While 
this is never the case when f is a characteristic function, as long as the 
dimensions of the set are not too small compared to my, 1~ will be close, 
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in L 2 say, to a function satisfying the hypothesis of Theorem 2.2. [Indeed, 
if the set A is too small, the uncertainty principle prevents us from making 
a good approximation in the class we consider. If the product of 
my/(1 - v 2 )  ~/2 with a characteristic linear dimension of A is large compared 
to 1, then we can make a good approximation. In the case of one spatial 
dimension, a simple computation with A an interval clarifies this 
argument. ] 

T h e o r e m  4.2. Let ~,  be the single-particle solution of the free field 
Schr6dinger equation corresponding to a solution of the Klein-Gordon 
equation with ~b+(., 0 ) e ~ .  Then with f and v as in Theorem 2.2 and X, 
as above, 

lim t 3 l X t ( ~ )  - Y,I = 0  
t ~oo  

where 

Y, = f f ( x  - v t ) IHmO + (x, t)l 2 d3x 

Remark. 5 l a ( x - v t )  lH1/2(9+(x,t)[Zd3x is just the Newton-Wigner 
probability of finding a particle in A, in the single-particle state ~b+(., t). 
Insofar as we can approximate 1A by a function satisfying the hypothesis 
of Theorem 2.2, i.e., when A is not too small, the theorem says the bump 
is where the Newton-Wigner localization theory says the particle is. 

Proof. By (4.3), 

f~, q,~(x, .)1 ' ax 

=4{~(~b,)2 li~,II2+~(H i(~t)2 ilH-~q~,ll2 

+ 2~(~b,)~(H-lq~,)(~b,, H- l~ , )~}  [ gt 1-4 

Then, by Theorem 2.2, 

fR3 Ir/'~(x'" )la d3x = 217*'12 [-1 + o(t oo)3 

and the cross terms above rapidly vanish, and II~b,U 2 IlH-lq~tll z 1/2. 
A similar application of Theorem 2.2 to the numerator shows that 

t 3 J f f ( x  - vt)IriS(x, .  )12 d3x - 21gxt 12 f f ( x  - vt)IH1/2~b + (t)[ z d3x = 0 tlimo 

Together, these give the result. | 
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Notice that Y, is independent of ~; X, becomes deterministic for large 
times. 

The case of several particles can be handled in very much the same 
way. Consider the case of greatest interest; that is, consider a state ~ which 
is an n-particle state with the n particles well localized and well separated 
in the Newton-Wigner sense. More explicitly, let {~b~),..., ~b(2 ~} c ~ be a 
set of n normalized, well-localized, and well-separated elements of Jr 
Insofar as these are well separated and well localized, they are ortho- 
normal. For convenience, let us suppose they are exactly orthonormal. 
Then the corresponding n-particle state ~u is simply given by 

~(~) = 12I tb(q~)), ~) (4.4) 
j=l  

and so W is the product of q independent random variables. This makes it 
easy to extend the computation of q in the one-particle case to the present 
context. For x near the support of ~b(+ j), only the q~(~b~)) 2 factor of I g~l = 
enters the computation, and it enters just as it would in the one-particle 
case. 

One sees as before that the filtered field configuration exists, belongs 
to ~ provided ~u is a finite-energy state, and possesses n well-defined, well- 
localized bumps in the place where the n particles are supposed to be. 

The converse is not so simple. If one filters in the state g* and finds n 
well-defined bumps, this does not mean g* is an n-particle state. For 
example, two bumps could arise from a genuine two-particle state or from 
a superposition of one-particle states. 

A difference between one- and many-particle states can already be seen 
by looking at the filtered configuration. One has for example 

Theorem 4.3. If gj(2) is a two-particle state constructed from two 
elements ~1 and qt2+ of ~ ,  then 

(I  g,(2)(~)]-2 Re([H~/20,~(x ' t). ~((32+ )(~) 

{ 0  if ~tr'/(2)(~ ) ~--- 0 

Notice that r/,~2~(x, 4) is of the form 

r] t~2l(x, 4) ---= a l (~)  H*/gfbl(x) + a2(~) HI/2(I~2(x) 
+ bl(~)  H 1/2q~l(x) + b2(~) H-1/2(62(x) 

where al,  bl are random variables. 

822/55/3-4-20 
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From Theorem 4.1 it follows instead that, if T (~) is a one-particle state 
constructed from the element er + +/~2+, then )1F')(x, 3) is of the form 

)1 ~ ' ( x ,  3) = c(~) H~/2(c~(~ J+ (x)  + fl02+ (x)  + d(~) H-~/2(~q~ 1+ (x) + flq~2+ (x) 

where c, d are random variables. 
Another natural procedure to decide whether bumps correspond to n 

particles consists in introducing the filtering of "m-point configurations" 
(outcome of measurements in which the value of the field is measured in m 
different points). 

D e f i n i t i o n .  The filtering of the m-point configuration in the state T 
is the map { ~ )1 ~' (,~)(xl " " Xm; ~) defined by 

1 
)1(~m)(Xl " ' '  Xm ; ~) ~" ~ i m  0 h - ~  Eg-'{~)(H 1/21ch(xl) ) (~(H-~/21~(~m))l O(Dh(x) )  } 

provided this limit exists in probability. 
Here Dh(x) is the complement in R 3 of the union of the closed cubes 

Ch(xi), i=  1, ..., m. 
One can verify that for every m, if T is an n-particle state, )1(~m) exists 

and belongs to Q |  |  provided T is a finite-energy state. The 
filtering of the m-point configuration in the state g* distinguishes between 
states of different particle number in the following way. Define the m-point 
correlations for the field configuration in a state T as the functions ~(~m) 
such that 

~v ~p 
,(,,)(x, x . , 3 ) = y  ~ " ' "  ~(ml) ' ' '  ~(mK) 

rt 

where (m 1 ..... mK) is a partition of x 1 . . . x  n in subsets containing ml,..., mk 
elements, ml + .-. +mk = n, not counting permutations within each subset. 

One has then 

7" Theorem 4.5. For every n, f f(m)(xl-- .x ,~;r  for m > . 2 n  
precisely if ~ is a state with less than n particles. 

In terms of the correlation functions one can also describe the 
asymptotic decoupling under the free evolution, when t ~ ___~, of the 
m-point configurations for n-particle states constructed from elements 
~+,..., 0~+ of ~ which have disjoint support in momentum space. The 
precise results are of the type of Theorem 4.2; we shall omit here the 
details. 
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5. C O N C L U S I O N  

We have seen that while the typical field configuration in the support 
of a wave function 7 t for the free Kle in-Gordon  field theory is a distribu- 
tion and not an element of the classical field configuration space, this is 
Simply due to the effect of "vacuum fluctuations" and these may be filtered 
out in a physically natural, mathematically meaningful fashion. 

What  is left after the filtering is done is an element of the classical field 
configuration space, provided the field is in a finite-energy state. Moreover, 
if the state is an n-particle state with n well-localized and well-separated 
particles in the Newton-Wigner  sense, then the filtered field configuration 
almost surely has n well-localized bumps at the particle positions. 

This last result permits a quite satisfactory identification of particles 
with bumps in quantum field configurations, and so justifies some related 
folklore, as well as shedding some light on the Born interpretation for the 
wave function in quantum field theory. 

Moreover, the filtered field configuration provides a quite natural 
means of discussing the localization of states in quantum field theory. The 
notion of localization this leads to is in good agreement with the Newton-  
Wigner notion of localization when the latter can be appl ied-- the Newton-  
Wigner theory is, strictly speaking, a theory of localization in the single- 
particle Hilbert space Jr and not a field-theoretic theory. 
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